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Abstract

During times of crisis, information access is crucial. Given the opaque processes

behind modern search engines, it is important to understand the extent to which

the “picture” of the Covid-19 pandemic accessed by users differs. We explore

variations in what users “see” concerning the pandemic through Google image

search, using a two-step approach. First, we crowdsource a search task to users

in four regions of Europe, asking them to help us create a photo documentary

of Covid-19 by providing image search queries. Analysing the queries, we find

five common themes describing information needs. Next, we study three sources

of variation - users’ information needs, their geo-locations and query languages

- and analyse their influences on the similarity of results. We find that users

see the pandemic differently depending on where they live, as evidenced by the

46% similarity across results. When users expressed a given query in different

languages, there was no overlap for most of the results. Our analysis suggests

that localisation plays a major role in the (dis)similarity of results, and provides

evidence of the diverse “picture” of the pandemic seen through Google.
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1. Introduction

The Covid-19 pandemic is proving to be an event without precedent. Health

experts are describing the multitude of ways that people and communities are

feeling the impact, ranging from confusion, isolation, and feelings of insecu-

rity [1], to large-scale problems such as alcohol and drug abuse [2], and in-5

creased levels of anxiety and sleep disturbances [3]. The World Economic Fo-

rum reported that “Covid-19 has changed what we search for online” during

lockdown, citing an increase in queries of diverse topics such as staying healthy,

financial security, personal hobbies and cooking.1 Studies have further shown

that search engine queries related to Covid-19 can be used to predict outbreaks10

in the area of origin [4] and, more importantly, that search activity correlates

with daily confirmed cases and deaths in some areas [5]. These studies indicate

that users rely significantly on search engines to access information during the

pandemic. Furthermore, search queries surrounding the pandemic concern not

only facts about the virus, but also the implications on our lives, which likely15

differ from country to country.

Proprietary search engines – and in particular, Google – play a leading role in

the public’s access to information, processing approximately 90% of all queries

executed worldwide,2 with this figure rising to 93% for Europe.3 As arguably

one of the most complex and opaque information access systems used by the20

public, Google holds great power over what users see – and what they do not

see [6]. As demonstrated in [7, 8], Google search performs personalisation of

results based on users’ locations, which resulted in different results being shown

to users based in different locations. Another study has focused specifically on

investigating the localisation aspect, specifically with regards to the localness of25

search results, i.e., to what extent the retrieved results were published by local

sites for different queries [9]. However, the research to date has not measured

1https://www.weforum.org/agenda/2020/05/google-trends-search-online-coronavirus-covid-19/
2https://gs.statcounter.com/search-engine-market-share
3https://gs.statcounter.com/search-engine-market-share/all/europe
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how much these processes impact search results in the context of the pandemic.

There is a growing body of literature suggesting that users are largely un-

aware of the opaque algorithmic processes, which directly influence the infor-30

mation they access [10, 11]. Given users’ trust in search engines, these different

results have great impact, from influencing users in their scientific knowledge

[12], manipulating their voting decisions [13], etc. Since providing access to

information in this situation is so crucial, it is important to consider the extent

to which what users are seeing differs from place to place.35

Visual information – such as that contained in images – has been shown to be

crucial in the context of science communication (including messages concerning

Covid-19). Images are often interpreted as being closer to the truth as compared

to other forms of communication, because of their physical representation of an

event such as the Covid-19 pandemic [14, 15]. Thus, the current work focuses40

on image search results and in particular Google, as a key mechanism for the

public to find visual information sources about the pandemic.

1.1. Goals of the study

This study investigates the diversity in the picture of the pandemic that

users see through Google image search, focusing on three sources of variation:45

the queries of interest to residents of a given geographical location (i.e., prevalent

information needs), the location from which the search queries are executed, and

the language of the query. We also analyse to what extent the localisation rates

(i.e., ratio of local results in the search results) affect the variations in image

search results when users search for visual information on the pandemic.50

In the first part of the study, we utilised crowdsourcing to generate queries

for visual information concerning Covid-19. We invited people in four Euro-

pean countries (Great Britain,4 Germany, Spain and Italy) to participate. We

asked them to create queries for a simulated search task of collecting images

4We used Great Britain instead of the United Kingdom for consistencies with the search

API, further described in Section 3.4.
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to document the pandemic. Through an analysis of the queries, we develop a55

taxonomy for categorising them. In the second part of the study, given our

corpus of queries, we analyse the retrieved search results by specifying different

geo-locations of the users. We further examine the influence of thematic cate-

gories, users’ locations, and the role of the query language. Our study addresses

three research questions:60

RQ1. What image search queries are of interest to people across regions?

RQ2. How similar are the results presented to different users?

RQ3. What aspects influence the similarity of results?

To our knowledge, this is the first attempt to understand how proprietary

search mediates the “picture” of the Covid-19 pandemic seen by people across65

locations. The paper is structured as follows. In Section 2 we describe related

work. In Section 3, we describe the methodology used for the collection of the

queries and for the analysis of the queries and search results. In Section 4, we

present the analysis of the queries collected, while in Section 5, we provide the

results of the analysis of Google search results. In Section 6, the key findings of70

this work are discussed and in Section 7, we conclude this paper.

2. Related Work

2.1. Web auditing

Various aspects, such as user behaviour or their location, have also been

utilised by search algorithms to recommend relevant information that match75

users’ interests more [16, 17]. Whilst this process has been shown to improve

search performance, it has also increased the diversity between results seen

by users, e.g., in the form of “filter bubbles” [18]. Thus, recent work use Web

auditing to investigate the influence of personalisation to the results presented by

search engines to different users. For instance, Kliman-Silver et al. [8] collected80

and analysed Google results for 240 queries over 30 days from 59 different GPS
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coordinates in the US to examine the influence of users’ geolocations on search

results. They found that 18-34% search results may vary based on users’ geo-

locations. However, these differ between different types of queries. In a similar

vein, Hannak et al. [7] studied personalisation on a diverse set of queries across85

200 Google user accounts. They estimated that on average, 11.7% of search

results differ, due to the effect of personalisation.

Other studies [18, 19] investigated whether users searching for suicide-related

queries in Google would be shown the suicide helpline at the top of the results.

Based on their findings suicide helpline was not equally displayed to all users but90

differ based on user geo-locations. Additionally, another study found significant

differences between politically-related search pages shown to users who were

logged in and their incognito tabs [20]. These results indicate the significant

influence of personalisation in the results that users see. Instead of auditing

the results presented to different users, Ballatore et al. [9] examined the Google95

search results from a localisation aspect using capital cities as queries. They

found that results describing cities from well-developed areas were often pub-

lished locally, while results describing cities in the “Global South” were more

likely to be more diverse and were often dominated by information published

by other countries in the “Global North”.100

Web auditing has also been performed by comparing results between differ-

ent search engines [21, 22]. Makhortykh et al. [21] examined how six different

search engines present results related to Covid-19 using the query “coronavirus”

and found that different search engines prioritised results from different sources

(e.g., government resources, or non-official resources such as Reddit or social me-105

dia). Furthermore, the authors found that even the same search engine might

randomise the top 10 results for different users. Jiang [23] compared results

retrieved by Google and Baidu, and found that the results achieved only 6.8%

overlap with very little similarity between rankings.

2.2. Information needs and Covid-19110

In previous studies, users’ search behaviours during the Covid-19 pandemic
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have been analysed from an infodemiology approach. For instance, Canchari et

al. [24] used Trends data from searches related to the coronavirus disease during

the period of January to May 2020 and identified that “coronavirus” was the

most frequent search term, followed by “fever,” “sore throat,” and “cough.” In115

addition, they found that specific queries such as “covid spread,” “face masks,”

“stay home,” were related to the increased severity of the pandemic during that

period. Using a similar approach other works [5, 25, 4] utilising both Google

Trends and Baidu Index, found out that terms relating to shortness of breath,

headache, chest pain and loss of smell correlate with rates of confirmed cases120

and deaths. Another study investigated aspects influencing the use of specific

queries [26]. Whilst they found that the term ”coronavirus” was used frequently

throughout the pandemic, the use of some queries was found to be influenced by

media coverage. E.g., queries such as ageusia (loss of taste) and anosmia (loss

of smell) were only found in the search trends once they have been reported as125

Covid symptoms by the media.

2.3. Summary

Our information landscape is characterised by mediation from opaque algo-

rithmic systems, and in particular, the Google search engine. Many users are

entirely unaware that their information choices are under the influence of algo-130

rithms. Meanwhile, users who are aware of algorithmic mediation often express

frustration with their lack of control over information filter bubbles. However,

with only one search engine serving most of the world’s users, it becomes dif-

ficult to understand how a search engine “should” behave, and which results

are most appropriate for whom. To this end, much recent work has focused on135

achieving a better understanding of how Google in particular, customises users’

search results, based on their location or profile.

With this in mind, in the next section, we detail the methodology of our

study. As will be explained, we focus on studying the impact of three factors –

users’ information needs, their location and the source language of their query140

– on the image URLs and visual content presented to them by Google. By
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comparing the results across four European countries, we characterise the above

three factors as sources of variation in a user’s view on the Covid-19 pandemic.

3. Methodology

3.1. Overview145

As shown in Figure 1, we take a two-step approach, involving a crowdsourc-

ing study and an analysis of search results. First, we aimed to collect, in a

natural manner, queries that Google users would pose to search images relevant

to the Covid-19 pandemic. Collecting image search queries through crowdsourc-

ing allows us to exploit the wisdom of the crowd [27, 28, 29], having access to150

a diverse set of people with “web literacy”. In other words, we make no claim

that our sample of workers from each country represents the general population

of that country.

The first step involved crowdsourcing a simulated search task [30] to partic-

ipants in four European locations (Great Britain (GB), Germany (DE), Spain155

(ES) and Italy (IT)). Queries were cleaned and aggregated, and a content analy-

sis was performed, resulting in a taxonomy of themes characterising participants’

information needs. In the second step, we used the aggregated queries to study

the similarity of results retrieved by Google. Images were collected, and then

content analysed by an image tagging tool. Finally, we conducted three analy-160

ses to understand the similarities and differences in the “view” on the pandemic

portrayed: i) we compared the image overlap in terms of the URLs retrieved,

ii) we analysed the content of the images retrieved (i.e., the respective content

tags), iii) we performed a localisation analysis, to understand the proportion

of images presented to a user, which are sourced from a domain located in the165

user’s respective country.We also investigate how aspects (such as the thematic

category of query or query language) influence the similarity of results.
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Figure 1: Overview of the data collection and analyses in the two-step approach.

3.2. Crowdsourcing search queries (Step 1)

We required a crowdsourcing platform with a large pool of workers estab-

lished in Europe. The Clickworker5 platform advertises an attractive population170

of workers, with 30% being located in Europe. Additionally, it features a func-

tion for pre-selecting eligible workers based on country of residence and gender.

To test the platform’s claims and whether we could achieve the desirable dis-

tribution of demographic characteristics in the sample, we performed a test run

targeting the four countries. Through this process, we also estimated the time175

required to complete the task, which was ten minutes. Following the recom-

mendation of the platform6 we rewarded workers with e1.60 per completed

task according to the above estimation.

We then executed four crowdsourcing “campaigns,” one for each target coun-

try, in which we sought responses from 50 men and 50 women, for a total of180

400 participants. Our task was set up as a questionnaire using the template

provided by the platform. The task, described in detail below, was presented

in English to workers across locations, to ensure uniformity. However, workers

were encouraged to complete the task in the language that they usually search

5www.clickworker.com/clickworker-crowd/
6https://www.clickworker.com/survey-participants-for-online-surveys/fee-

recommendations
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the Web (a.k.a., we included the following in the Instruction to the workers:185

“Please provide your queries in the language you usually search the Web.”).

Furthermore, we asked workers to state explicitly the language of their queries.

The crowdsourcing tasks for all four locations were posted in parallel and run

for a couple of days during mid-September 2020.

3.2.1. Description of simulated search task190

Crowdworkers selecting our task were first presented with the project infor-

mation sheet, which: i) identified our research group; ii) provided information

on how the data would be used, and assured participants that responses were

anonymous; iii) asked participants for informed consent. They were then pro-

vided with two prompts, and asked to provide three search queries (of up to195

five words per query) in response to each prompt. They were also told that

“you may test your queries in Google Image Search if you wish to check the

images retrieved for a given query.” Although we did not require this check, it

was encouraged to promote quality responses.

The two prompts were as follows (see also Figure S1 and S2 in the Supple-200

mentary Document):

Prompt 1. The number of photo documentaries that exist depicting the historic pan-

demic of 1918 is limited. We want to record the Covid-19 pandemic

through a photo documentary. Please provide us with three image search

queries to search the Web and collect relevant images documenting the205

current pandemic, and its various dimensions / aspects.

Prompt 2. We want to record the habits that people developed during the Covid-19

lockdown through a photo documentary. Please provide us with three

image search queries to search the Web and collect relevant images docu-

menting these habits. You may include examples of both “beneficial” as210

well as “harmful” habits.

Prompt 1 aims at collecting queries that give a more general view of the

pandemic, also providing rich visual information. For example, an image of a
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crowd wearing masks may be more valuable than a graph providing statistics

about the pandemic, in that it captures what made an impression on people.215

This is also the reason why Prompt 1 mentions the 1918 pandemic, stimulating

the crowdworkers to think about what will be remembered longterm about

Covid-19. On the other hand, the goal of Prompt 2 is to collect queries that

give a view of the pandemic at the individual level and are more relevant to

a person’s habits. Thus, “human centric” images are expected to be collected220

“spontaneously” from the two prompts used in the task.

3.3. Processing the queries (Step 2)

3.3.1. Identifying high quality responses

As in similar crowdsourcing tasks, we face the issue of the quality [31] of the

collected results. In this respect, we considered two auditing methods and one225

mitigation method. This helped us establish that the queries used throughout

the work are of quality in terms of matching the task requirements and the

conceptual requirements of this work (i.e., are as realistic as possible).

As a mitigation method to remove spam, we removed any participant re-

sponses that had an overall low quality (i.e., in all six required queries). In the230

context of our task, low quality responses are ones that provided a link instead

of a query, or a reply that is completely out of topic (e.g., queries that addressed

the 1918 pandemic). In total, we discarded 50 responses out of the original 400

(see Table S1, for details). This initial data cleaning still allowed us to maintain

a fairly balanced dataset in terms of country and gender representation, which235

was our initial objective (50 men and 50 women per country).

Finally, as a last measure to audit the appropriateness of collected results

compared to the objectives of this work, we asked participants to indicate how

frequently they used the image search function. 40% of participants self-reported

that they use image search daily while 44% reported that they use it 1-3 times240

per week. Additionally, 25% of participants reported that image search is their

principal source of information and for 73% of the participants it is their sec-

ondary source. For a detailed report on how participants per country use the
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image search function, see Figures S3 and S4 in the Supplemental document.

These results show that participants are a representative sample of image search245

users, who frequently use image search as an essential source of information.

3.3.2. Pre-processing the collected queries

The queries from both tasks were merged, and then cleaned and tokenized,

creating a gender-balanced dataset for each of the four geographical regions.

Steps in the query cleaning were as follows: i) replacement of tab, newline250

and multiple space characters with a single space; ii) all text to lower-case;

iii) all the expressions referring to ‘covid’ e.g. ‘corona’ or ‘coronavirus’, were

replaced with the word ‘covid’; iv) any URLs were removed. We identified all the

unique queries collected from the participants in each country and computed the

number of appearances for each unique query without considering any duplicates255

of the same user (i.e. frequency).

3.3.3. Categorisation of the queries

Next, we aimed to categorise the queries in terms of the users’ information

needs; thus, we performed a content analysis [32]. A manual analysis was pre-

ferred over automatic means as to avoid the biases inherent in such approaches,260

and because our queries, while being natural language texts, are not complete

sentences. To this end, an inductive approach was used. Initially, three re-

searchers examined the GB queries, discussing the topics expressed in them,

until a consensus on the six required categories was reached. Next, two re-

searchers analysed the remaining queries from the other locations (DE, ES and265

IT), involving a third researcher to resolve any disagreements.We were careful

to consider whether or not additional categories might be needed, given that

the six categories were defined through the analysis of the GB data; however, it

was found that the taxonomy was applicable across the data from all regions.

Each query was mapped onto one and only one category.270

The categories defined through the content analysis, are as follows:

• Stay at home: Queries affirming or asking about habits or actions while
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in a stay-at-home restriction or lockdown. These queries describe the

habits developed due to the stay at home restriction. Also, it includes

queries stating the impact of the pandemic to a person’s mental state and275

well-being. Examples: “covid zoom call”, “covid food delivery”.

• Personal Protection: Queries asking or describing a personal protection

instruction or measure during the pandemic. If the concept of the query

can be interpreted as personal protection measure it is included here; thus,

queries about equipment or accessories needed are included as well. This280

category also hosts queries asking general questions about the “do’s and

don’ts” during the pandemic. Examples: “face mask”, “hand washing”.

• Healthcare: This category hosts queries relevant to the healthcare sys-

tem, the way it was impacted, and the means/methods for identifying

covid-19. Examples: “covid vaccine”, “covid test centre”.285

• Pandemic General Information: General queries regarding the pan-

demic, e.g., how much it has spread in the world and queries asking for

statistical facts. Includes queries asking about covid in certain geograph-

ical areas. Examples: “covid outbreak”, “covid in Italy”.

• Society/Community Impact: Queries asking or describing the impact290

that the COVID-19 pandemic & measures had in the society and the dif-

ferent communities (i.e., at a collective level). This category includes gen-

eral queries relevant to social phenomena in time and space that were not

present before. Examples: “covid empty streets”,“covid NHS clap”.

• Miscellaneous: This category is used for any queries that do not fall295

into any of the above and/or of which the meaning cannot be clearly in-

terpreted. Examples: “1918 flu pandemic”, “5 edtech startup”. For

the purpose of this study, we do not analyze the queries from this category.
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3.3.4. Aggregation of the queries

After categorising the queries, we identified that some queries were very300

similar but contain differences in the word order, synonyms or including the

word “covid”. To produce a more robust analysis, for each category, we merged

similar queries together if they contain: i) the same words but in different

order; ii) synonyms; iii) the same words with “covid”, “image”, or “photo”.

Queries that are sub-sets of each other, e.g., “covid hospital” and “covid305

nightingale hospital” were considered to be separate. From each merged

group, we selected one representative query, the one with the highest frequency.

3.4. Retrieval of images from Google (Step 3)

We used Zenserp API7 to retrieve results from Google images. To investigate

how the results differ when the search is carried out from different locations,310

we modified the “gl” (geo-location) parameter in the search API. Four different

countries are investigated in this study and are represented using their ISO-3166-

1 country codes: Great Britain (“GB”), Germany (“DE”), Italy (“IT”) and

Spain (“ES”). To reduce the variable, we specified the “hl” (website interface)

to be ”en” (English), and the search engine to be ”google.com” throughout the315

experiment. E.g., a search for the query “face masks” from a user based in

Germany is retrieved by specifying the following parameter in Zenserp:

params = (("q", "face masks"), ("tbm", "isch"),

("device", "desktop"), ("gl", "DE"), ("hl", "en"),

("search_engine", "google.com"));320

We retrieved the top 100 results per query in the period of 18-25 Novem-

ber 2020. For each query, the search request for the four locations were done

consecutively (i.e., same day and similar time) to avoid the influence of results

volatility [33] in the similarity analysis.

7https://zenserp.com/
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Table 1: Example of Clarifai tags.

Image General Tags

Q: “supermarket queues” [38]

woman, people, stock, shopping, street, city,

adult, shop, man, meeting, group, teamwork,

shopping bag, pavement, market, conversation,

cart, supermarket, group together, business

3.5. Image content analysis (Step 4)325

The top 30 images from each query were tagged using the Clarifai image tag-

ging API.8 In recent years, Clarifai has become a popular tool for researchers

aiming to understand visual communication behaviours on the large scale (e.g.,

[34, 35, 36]). Interestingly, Chen and Dredze [37] recently used Clarifai to un-

derstand the content of images shared on Twitter in discussions about vaccines.330

In a similar vein to previous work, we used the “general” pre-trained Clarifai

model that produces a list of twenty keywords that describe the image content.

An example is shown in Table 1.

3.6. View of the pandemic (Step 5)

We investigated the variations – the similarities and dissimilarities – of re-335

sults retrieved by Google Images, based on thee aspects of the images retrieved:

1. Image overlap: similarity of the source URLs of the retrieved images. We

measured the proportion of image overlap (i.e., same image URLs) using

the overlap coefficient measure [39] in the top 30 and the top 100 results.

2. Concept overlap: the content of the images retrieved (i.e., tags received340

from Clarifai). The concept overlap is measured using Jaccard similarity

of the unique tags, and the cosine similarity of the tags frequency. These

measures are computed in the top 30 and top 100 results

8https://www.clarifai.com/
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3. Localisation: the rate of localness of search results [9], which is quantified

using two stages: i) Identifying the country associated with the domain345

using suffix identification (e.g., “bbc.co.uk” and “abc.es” are registered

in the UK and Spain, respectively), or by retrieving registrant’s country

information via the whois protocol. Using this approach, we were able to

identify 98% of all the results found in our analyses. ii) After the domains

have been identified, we used a simple, interpretable metric proposed by350

Ballatore and colleagues [9] to quantify the localisation rate of a results

set, i.e., the ratio of the local results (i.e., results coming from a domain

located in the user’s location) to the number of total results analysed.

Thus, the measure ranges from 0 (i.e., all retrieved results are non-local)

to 1 (i.e., all results are local with respect to the user). We used the metric355

to calculate the ratio of localised results in the top 30 and 100 images.

Using these aspects, two analyses were conducted, one in which we varied

the country from which the user searched on the queries, and a second in which

the language of the query is varied, although the country of access is held con-

stant. We also investigated the influence of thematic categories of queries in the360

similarity of results.

4. Analysis of user queries

The queries collected from the participants were categorised into one of five

thematic categories and then aggregated into similarity groups (i.e., representa-

tive queries), as detailed in Section 3.3.4. We compare the distributions of the365

thematic categories, as they are used across countries, considering the number

of representative queries (Table 2).

The categories in Figure 2 are presented in order, from queries address-

ing more “personal” search topics (i.e., Stay at Home, Personal Protection) to

more “general” search topics (i.e., Healthcare, Pandemic General Information)370

to queries providing a global perspective of the influence of the COVID-19 pan-

demic to the core of the society (i.e., Society Impact). Figure 2 depicts the
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Table 2: Number of representative queries by category and country. In parenthesis is the total

number of queries in each category.

Stay Personal Healthcare Pandemic Society

at Home Protection General Impact

ES 72 (87) 48 (80) 42 (60) 41 (74) 95 (126)

DE 52 (74) 36 (58) 28 (34) 65 (105) 85 (117)

IT 58 (84) 52 (80) 52 (77) 61 (91) 112 (153)

GB 70 (108) 57 (83) 26 (43) 58 (89) 113 (153)

Figure 2: Percentage of the representative queries per category and country.

percentage of representative queries for each category over the total number of

representative queries per country (not including the miscellaneous category).

The results presented in Figure 2 provide an overall comparison of the variety375

of queries collected from each country in each category.

Before going into the analysis of the results we performed a chi-square test

of independence to examine the relation between the categories and the country

of residence for the set of representative queries. The relation between these

variables was significant, X2(15, 1223) = 24.0308, and p = 0.02. For this reason380

we have a closer look to this relationship.
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4.1. Analysis of user queries per category

As shown in Figure 2, in the Stay at Home category, the crowdworkers

in Spain provided the most representative queries, in contrast to the Italian

crowdworkers who reported the lowest variety in comparison to other workers.385

The German participants reported 4.6% less representative queries compared to

the Spanish sample, where as the Great Britain sample had the second highest

percentage of representative queries which means that they provided diverse

topics of queries in the same category.

Considering the Personal Protection theme, we notice that the German sam-390

ple reported the lowest percentage of representative queries, thus the highest

similarity of queries, as shown in Figure 2, while the Great Britain sample had

the opposite behaviour, having the most diverse queries.

In contrast to the rest of the categories, in the Healthcare theme, the Great

Britain crowdworkers reported less representative queries than in other cate-395

gories. In contrast, Italian crowdworkers submitted the highest percentage of

representative queries in this category which can be justified by the fact that

the Italian population had a larger time of exposure than in other countries to

the pandemic during the time of the study, and this is reflected in at least in

the Healthcare category that includes queries relevant to hospitals, symptoms,400

etc.

Regarding the Pandemic General Information category, German crowdwork-

ers have a much larger percentage of representative queries (i.e., highest similar-

ity), at least 6.2% more compared to the rest of the countries. This is the largest

difference of representative queries among countries over all the categories, as405

shown in Figure 2. It appears that German crowdworkers are “preoccupied”

with various general topics that relate to the pandemic and they have a more

similar way of expressing those queries compared to workers from other coun-

tries. Moreover, the Italian and Great Britain sample of queries have a very

similar percentage of representative queries ranking second and third respec-410

tively, compared to the other countries.

As per the Society Impact category, as shown in Figure 2, for every country,
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the percentage of representative queries is the highest among all the categories.

This indicates that every sample of queries from each country has a higher focus

on describing social phenomenon emerging from the pandemic or the subsequent415

effects of the measures to restrict the spread of the virus. Queries reported by the

Spanish and German workers in this category have almost the same percentage

of representative queries and the lowest among all countries. On the other hand,

the sample of queries received from GB on this category was the most diverse

expanding to different topics (highest percentage of representative queries).420

4.2. Overall view of the collected queries

From the observations presented above, it appears that the sample of queries

collected from the crowdworkers in Great Britain provides a large diversity of

queries for the different categories, as compared to the rest of the countries. In

other words, with the exception of the Healthcare category, the GB workers had425

a large percentage of representative queries in all the categories in contrast to

the other countries which means that they provide queries of diverse topics in

almost all the categories. Thus, in the second part of the study, the analysis of

similarity of search engine results, we focus on the GB queries.

5. Analysis of similarity of search engine results430

5.1. Analysis of search results of queries accessed from different locations

5.1.1. Queries

We used the GB-sourced queries to investigate how different are the results

when the query is executed across locations. 324 representative queries were

used in this analysis; the query length ranges between 1-5 words (mean=3.15,435

SD=0.98). We used four geo-locations (GB, DE, ES and IT) in the search

request and retrieved the top 100 image results returned from Google Search.

5.1.2. Similarity of results based on image URLs

We first analysed the image overlap in the top 100 results when the same

query was accessed by users from different geo-locations. We found that the440
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Figure 3: Comparison of shared images in the top 30 and top 100 (over all 324 queries).

GB results have around 44% overlap compared to results accessed from DE,

ES and IT using the same queries. These proportions are reasonably lower

compared to the image overlap between DE-ES, DE-IT and ES-IT results (60-

66%). Furthermore, the average overlap of images in the top 30 (mean=0.46,

SD=0.21) was significantly lower than the top 100 (mean=0.53, SD=0.17) over445

all queries (t(323) = −19.54, p < 0.05). The overlap between location pairs are

shown in Figure 3.

We further found that the overlaps differ significantly between queries (see

Table 3). The query “lockdown protest london” retrieved more than 90% of

the same images in the top 30, regardless of the location; it achieved a mean450

similarity of 94% across all location pairs, the highest similarity in our dataset.

On the contrary, the query “covid”, “covid social”, “covid lockdown”, and

“covid 2020” obtained less than 3% overlap for each location pair (average of

2% overlap over all). This result indicates that with some queries, users may see

very different results depending on where they live. In general, results with a455

more general nature (e.g., those that do not mention the location in the query)

are likely to be less similar across regions compared to more specific queries.

Figure 5a shows the average similarity for each category. A one-way analysis

of variance shows a significant effect of the thematic category of queries and the

similarity of results, F (4, 319) = 10.16, p < 0.05. Post-hoc comparisons using460

the Tukey HSD tests [40] showed that the least similar category, Pandemic gen-
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Table 3: Mean average image overlap in the top 30 results across all location pairs.

(a) Most similar images

Query Overlap

lockdown protest london 94%

face shields philippines 92%

thank you nhs 91%

social distancing schools

uk

91%

excessive hand washing 88%

social distancing sign uk 87%

how to get taste back 87%

face mask littering 87%

lockdown baking 86%

home hiit workout 86%

(b) Least similar images

Query Overlap

covid 2020 2%

covid social 2%

covid lockdown 2%

covid 2%

covid hospital 4%

covid virus 6%

covid deaths 7%

covid yoga 8%

show me covid

infection graphs

9%

covid update 9%

eral information (mean = 0.33, SD = 0.16), was significantly different to three

categories: Personal protection (mean = 0.51, SD = 0.22), Society/community

impact (mean = 0.45, SD = 0.20) and Stay at home (mean = 0.54, SD = 0.19).

We also found statistically significant differences between Stay at home queries465

(the most similar in our study) and two categories: Society/community impact

and Healthcare (mean = 0.41, SD = 0.21). The most similar and least similar

queries in each category are shown in Table S2 in the Supplementary document.

We further analysed the distribution of categories in two sets: i) Set 1: 100

queries that resulted in the most similar images (averaged across all four geo-470

locations in the top 30), and ii) Set 2: 100 queries with the least similar images.

A chi-square test found a significant difference between the two distributions

(Figure 4) χ2(4, N = 200) = 32.64, p < 0.05. Queries that produced the most

similar results (Set 1) were from Stay at Home (34 queries), Society impact

(31 queries) and Personal protection (22 queries) categories. A considerably475

lower number of Stay at home and Personal protection queries were found in

Set 2 (least similar results), although the number of Society impact queries was
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(a) Top 100 most similar queries (b) Top 100 least similar queries

Figure 4: Distribution of categories

similar between both sets. Only six Pandemic general queries were found in the

most similar results, however, up to five times as many queries of this category

was found in the least similar results.480

5.1.3. Similarity of results based on Clarifai general tags

Our previous results show that the images retrieved for the same query

differ considerably based on users’ geo-location. In this second comparison,

we analysed the similarity of the general tags produced by Clarifai for the top

30 images in each search request. This investigates the similarity between the485

concepts portrayed. We measured the similarity using Jaccard coefficient for the

unique tags, and cosine similarity of the term frequency of the tags.

Our results indicates that although the search results have low similarities

with regards to the image overlap (mean=0.44), the similarity of concepts por-

trayed by the general tags are significantly higher (i.e., mean=0.63 (Jaccard) and490

0.94 (cosine)). These differences are statistically significant, t(323) = −31.79

and −48.71, respectively (p < 0.05). For instance, the query with the least

similar images, “covid 2020”, shared only < 2% overlap in the top 30 results.

However, the corresponding general tags achieved much higher similarity (i.e.,

Jaccard=0.44 and cosine=0.83). Figure 5 further shows the similarity across495

categories for both image overlap and Jaccard similarity of the general tags.

We did not detect any statistically significant differences between categories

and the similarity of general tags. However, we found that least similar re-
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(a) Image overlap (b) Jaccard similarity of general tags

Figure 5: Similarity of results across categories (Top 30)

sults were generally retrieved by queries that were more of a general nature,

e.g.,“covid social”, “covid lockdown” and “covid shopping”. Interestingly,500

they often contain the word “covid” (found in 29 out of the 30 least similar

queries). In contrast, none of the 30 queries with most similar results con-

tain the word “covid”. Half of these queries, however, contain named enti-

ties (e.g., “thank you nhs”9, “uk lockdown breaches”, “new york streets

during lockdown” and “usa anti mask protests”), which indicate more spe-505

cific information need. One query, “london standstill during covid”, al-

though contains specific location, was one of the least similar queries, i.e., it

retrieved different images that portrayed different concepts when accessed from

different locations. We investigated this further in the next section.

5.1.4. Results localisation510

We analysed whether search localisation was a contributing aspect to the

dissimilarity of the search results. In this section, we investigated the rate of

local sites found in the search results.

Our findings show that when the queries were searched by a user based in

GB, around two-fifths of the top 30 search results were from localised sites,515

i.e., GB sites (mean = 0.42, SD = 0.26). This figure is significantly higher

9NHS stands for National Health Service, which represents the healthcare system in the

United Kingdom.
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(p < 0.05) compared to the localisation rates from other countries: DE (mean =

0.16, SD = 0.16), ES (mean = 0.17, SD = 0.19) and IT (mean = 0.11, SD =

0.17). The localisation rates for these three countries further decreased when

considering the top 100 results (mean = 0.11, 0.10, and 0.08, for DE, ES and IT,520

respectively), while the GB localisation rate remained consistent (mean = 0.43).

Interestingly, although the mean rates of localisation were low, we found very

high variations between these queries, shown as outliers in Figure 6. These in-

clude general queries such as “covid”, “covid patient”, “covid 2020”, which

were heavily localised over all countries. We further found that queries contain-525

ing the word “covid” has significantly higher localisation in DE, ES and IT

countries compared to those without (an average of 0.21 and 0.06, respectively;

p < 0.05).

Interestingly, we also found specific queries, such as “london standstill

during covid”, which retrieved localised sites outside GB. E.g., when access-530

ing this query from Germany, many results came from “DW.com,” a German

site that reports news from Germany and around the world. This brings some

insights on why this query retrieved less similar results although it can be con-

sidered to be a specific query (i.e., including named entities in the query). The

queries with the highest and lowest localised results are listed in Table S3 in the535

Supplementary Document.

We further found evidence that location-based personalisation greatly in-

fluenced the dissimilarity of the results. The average localisation rates in the

four countries has strong negative correlation to the overall similarity of re-

sults (Pearson’s r=-0.66). The correlation further increases (Pearson’s r=-0.78)540

when taking into account countries outside of GB. We found no correlation

between GB localisation rates and similarity of results. These results suggest

that location-based personalisation algorithms prioritise local results for some

of these queries when accessed from DE, ES and IT; this, therefore, reduced the

similarity across the search results.545

We further analysed the distribution of country-specific sites in the top 30.

Over all 324 queries, results accessed from GB contain <2% results from DE,
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(a) Top 30 (b) Top 100

Figure 6: Rate of localisation in the results (324 English queries)

ES and IT. In contrast, the DE, ES and IT results included around 22-23% of

GB sites. Across the four locations, about one-third of results were from US

sites (33-39% in the top 30, and 37-38% results in the top 100).550

Upon analysing the localisation rates for the top 30 results between the differ-

ent categories, we found that on average between the four geo-locations, Stay at

Home and Personal Protection queries were localised the least (mean=0.17 and

0.19, respectively). These aligned with the previous findings that showed that

the similarity of images in these two categories were the highest. The remaining555

categories, Healthcare, Pandemic general information, Society/community im-

pact (mean=0.25, 0.25 and 0.24, respectively) were localised significantly higher

compared to “Stay at home” queries (p < 0.05). However, the differences be-

tween the rest of the categories were not significant.

Due to the significant difference between GB results and the other loca-560

tions, we also analysed results from individual locations separately. As shown

in Figure 7, the localisation rates for all categories in GB results are consider-

ably higher compared to the same categories in DE, ES, and IT results. These

differences are statistically significant (p < 0.05) for all categories, except for

Pandemic general information queries between GB and ES results.565

We further found a notable difference in the localisation rates across cat-
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(a) GB results (b) DE results

(c) ES results (d) IT results

Figure 7: Rate of localisation per category in the top 30 (324 English queries)

egories in the GB results compared to the other countries. Whilst Pandemic

general information queries were localised the most for DE, ES and IT re-

sults, the localisation rates for these queries for the GB results were the lowest

(mean = 0.34, SD = 0.22) compared to the other four categories; up to 46%570

images retrieved were from US sites. The differences between this category and

Healthcare queries (mean = 0.51, SD = 0.27) and Society/community impact

queries (mean = 0.48, SD = 0.27) for the GB results are statistically significant

(p < 0.05).

Healthcare and Society/community impact queries were localised the most575

(mean=0.51 and 0.48, respectively). Upon further analysis, we found that

the Healthcare categories contain queries specific to GB, such as “covid nhs

workers”, “empty nightingale hospitals”, and “covid testing center uk”,

which might be the reason for the high results from GB sites. We also found

many queries in these categories related to the US, such as “usa anti mask580

protests” and “new york streets during lockdown” which retrieved a ma-
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jority of US sites in the results. Interestingly, some queries related to other

countries, e.g., “photos hospital wards pandemic italy” did not retrieve

any IT sites. This suggests that the specificity of a topic to a particular country

does not necessarily guarantee a localisation and another aspect (such as lan-585

guage) may also contribute to the localisation rates. We further investigate the

multilinguality aspect of the queries in the next section.

5.2. Analysis of search results of multilingual queries from the same location

5.2.1. Queries

This section aims to investigate how different the results are when the queries590

are executed in languages other than English. For this analysis, we required

multilingual queries, i.e., queries that mean the same thing but are written in

different languages. Although it was possible to translate the 324 English queries

automatically (e.g., using Google Translate), we wanted to ensure that the multi-

lingual queries were realistic and represented queries that native speakers would595

use. Therefore, we extracted multilingual queries (i.e., queries reported in na-

tive language by crowdworkers in Germany, Spain and Italy) that correspond

to the original English queries submitted by the GB residents.

To focus the analysis on the effect of multilingualism in the results, we

removed queries that appear the same way in different languages, e.g., “covid”,600

and “pandemia” (which means ‘pandemic’ in Italian and Spanish). In total, we

have 50 sets of multilingual queries that appear in at least two languages: 9

queries appear in all four languages, 8 in three languages (i.e., EN and 2 other

languages), and 33 in two languages (i.e., EN and another language). Examples

are shown in Table S5 in the Supplementary Document.605

5.2.2. Similarity of results

We analysed the image URLs retrieved by multilingual queries accessed from

GB. The results (shown in Table S6) indicate a very low overlap between these

queries. Our analysis shows that the average overlap between the top 30 re-

sults range between 0.00 to 0.04 (0.00-0.03 in the top 100 results). Queries610
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that retrieved similar results were those that shared similar words, such as

i) DE query: “homeoffice in covid” and EN query: “home office during

covid” (sharing 40% similar results), and ii) DE query: “covid europa” and

EN query: “covid europe” (sharing 26.67% similar results). Most of the mul-

tilingual queries, however, did not contain many shared words across languages615

and therefore retrieved very little overlap.

We also analysed the similarity of Clarifai tags for the search results. When

accessed from GB, multilingual results achieved Jaccard similarity between 0.35-

0.40 and cosine similarity scores of 0.78-0.83, regardless of the language of the

queries. These figures are lower than the concept overlap reported in Section 5.1,620

i.e., when the same queries are requested from different locations. However, we

note that the queries used in both analysis have different nature with regards

to size, categories, etc. More analysis is therefore required to investigate this

aspect in more detail.

5.2.3. Results localisation625

Finally, we analysed the localisation of results retrieved by these multilingual

queries. Specifying GB as the geo-location, we found a significant difference be-

tween the localisation rates of English queries and non-English queries. English

queries retrieved an average of 36% localisation rate (SD = 0.20). Meanwhile,

non-English queries retrieved much lower localisation rate (around 8-10% GB630

sites in the results).

Interestingly, when we analysed the results retrieved from other countries

(DE, ES and IT), we found that queries written in the official language of

the country of residence retrieved much higher localisation rates. The use of

German queries (27 queries) in Germany retrieved 79% localisation rate; the635

use of Spanish queries (21 queries) in Spain retrieved 72% localisation rate.

The highest localisation rate in our dataset was found for Italian queries (28

queries) retrieved in Italy, with 93% localisation rate. Similar to the findings

reported in Section 5.1, when the language of the queries was different to the

official language of the country, very small localisation was found in the results.640
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6. Discussion

The results reported in Sections 4 and 5 allow us to identify interesting

variations in what people see, and to make some specific observations on how

Google responds to parameters like the users’ geo-locations and query language.

Here, we answer our research questions and relate to findings in previous studies.645

6.1. RQ1: What image search queries are of interest to people across regions?

Previous studies [24, 26] use Google for infodemiology, utilising Google

Trends or Baidu Index, in identifying Covid-19 related queries. However, in

this work, we collect image search queries through crowdsourcing. This allows

us to have access to a diverse set of people with “web literacy” and collect a650

wide range of queries of diverse topics, that we wouldn’t have the possibility to

identify only by looking at popular Covid-19 queries.

Using content analysis, we created a taxonomy of five common themes for

categorising all user queries from four locations. Across all regions, the queries

focused more on the social impact of the pandemic and on new social phenomena655

experienced during the pandemic, and less on healthcare. The sample of queries

collected from the crowdworkers in Great Britain demonstrates a good deal of

diversity for almost all categories (except Healthcare), compared to the rest

of the countries. For that reason, we focus on GB queries for comparing the

similarity of Google image results. Moreover, the five thematic categories of our660

taxonomy were also used to examine the similarity between image results.

6.2. RQ2: How similar are the results presented to different users?

Based on our findings, when users from different locations search for the same

query, only 46% of the retrieved top 30 image results were similar. This figure

highlights the high percentage of difference in the visual information provided665

by Google images regarding Covid-19.

Analysing the general tags produced by Clarifai image tagger, the concepts

portrayed by the different results still achieve medium-high similarity (Jac-

card=0.63 in the top 30). These differences were more apparent in the top
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30 results than the top 100 results, indicating that users are more likely to see670

different results to each other if they are only interested in a smaller number of

images shown at the top.

We found a low localisation rate when retrieving results from countries other

than GB, which indicates that most search results were not highly personalised

to match the location of access. The use of English queries might heavily influ-675

ence these results given the possible lack of relevant documents in non-English

sites. However, when considering queries containing the word “covid”, which is

shared across four countries, the localisation rates were significantly higher. The

average localisation rates in DE, ES and IT strongly correlate with the average

similarity of results (Pearson’s r=-0.78), which suggests that localisation plays680

an important role in influencing the similarity of results.

When focusing on multilingual queries, the similarity of results reduced dras-

tically, often resulting in no similarity between images although the queries were

executed from the same location. Although these findings are not surprising

given the challenges for retrieving cross-lingual queries, this also indicates that685

some users (e.g., foreigners or immigrants) who prefer to articulate their queries

in their native languages do not have the access to the same information, al-

though they are based in the same country and are affected by the pandemic in

the same way.

6.3. RQ3: What aspects influence similarity of results?690

Regarding the analysis of the results of image search, we observed that

Google image search retrieved results with varying degrees of similarity, both

for users who are located in different countries, or those that use queries in dif-

ferent languages. When the same queries were used to retrieve the results from

different locations, we identified four aspects that might influence the results.695

First, we found evidence that thematic categories were represented differently

in the results. Our analysis indicated that, in our dataset, Pandemic general

information queries retrieved the least similar results between the four geo-

locations. One-third of the top 100 least similar queries are also from this
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category. Across the five categories, this category is also the most localised when700

accessed from outside of GB, which explained the low similarity rate between

geo-locations. This suggests that their overall view of the pandemic might

be fragmented based on where they live. Stay at home queries and Personal

protection queries, on the other hand, are more likely to retrieve similar results

regardless of location.705

Our analysis further shows that within the same thematic category, the de-

gree of similarity between queries varies widely. This indicates that other aspects

might also influence the similarity of results, which brings us to the second as-

pect, the specificity of the query. General queries (e.g., “covid hospital”) were

more likely to contain different results across locations compared to more spe-710

cific queries (e.g., “covid hospital uk”). This is likely caused by the specific

search engine’s (in this case, Google’s) algorithm that prioritises locally-relevant

results when processing general queries to filter out irrelevant information and

avoid information overload to the users [7, 17]. For example, the query “covid

hospital” is highly localised in different countries (0.47 for GB, and between715

0.47-0.87 for non-GB), which resulted in 4% similarity across the four locations.

Meanwhile, “covid hospital uk” resulted in no localisation when accessed

from outside GB (0-0.07), and a higher localisation rate in GB results (0.87),

achieving 67% similarity across the four locations.

The third factor that might influence the localisation aspect is the language720

of the query. Queries containing shared terms across languages (e.g., “covid”)

are more likely to be localised across countries, possibly due to the abundance

of relevant information from local sites. This results in more variations (i.e.,

less similarity) for users in different geo-locations. On the other hand, queries

that contain terms specifically in English (e.g., “homeschooling”, “lockdown725

baking”) might have fewer relevant results from non-GB local sites. Therefore,

these types of queries tend to provide users with similar information retrieved

from the same (English-language) sites, regardless of users’ geo-locations.

Finally, in addition to the language, we also found high similarity (i.e., image

overlap) for queries describing information needs specific to a location (e.g.,730
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in this case, GB). This includes queries such as “joe wicks workout” (0.75),

“clap for carers uk” (0.64), “boris johnson sick” (0.8) and “lockdown

protest london” (0.94), all of which contained aspects that were specific to

GB. Similar to the multilinguality aspect, relevant images to these queries may

not be very prominent in non-GB sites, due to the strong connections between735

these queries to the GB. The rates of localisation across different countries,

therefore, are much lower and the similarity between results is higher.

6.4. Impacts of the study

Eskens et al. [41] assert that users have rights to information for truth-finding

and other purposes that are relevant to them. During a global pandemic like740

the one we are currently facing, it is essential that users are directed accurately

to the information they need [21]. However, our study implies that with regards

to Covid-19 image search, localisation affects search results and consequently,

users do not have access to the same visual information when searching from

different countries. Furthermore, similar queries in different languages accessed745

from GB produced completely different results, which might not be as localised

as one would desire; this indicated a different and possibly dangerous treatment

of a certain part of the population living in GB.

Whilst previous studies have used Web auditing methods to examine the

influence of personalisation and localisation on search results [8, 20, 42, 43], to750

the best of our knowledge, no studies have focused on identifying the influence of

users’ geo-locations in image search results. Moreover, our study also analysed

localisation rates in the results, which has not been investigated at this scale

before.

Our exploratory study has shed some light on the wide range of difference of755

results similarity in Google Images. Our findings have shown that search engine

users, searching for the same information, may see completely different search

results based on where they live and the types of queries they use. The extent

to which these results implicate users’ information access across regions is an

important aspect that we aim to investigate in our future work.760
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6.5. Limitations of the study

6.5.1. Crowdsourcing task

As discussed in Section 3.2.1, our aim when referring to the lack of documen-

tation through photos during the 1918 pandemic was to “provoke” the crowd-

workers to give queries that would generate more human-centric search results.765

It is possible that our formulation of the task could lead the crowdworkers to

draw parallels between the two pandemics that might not have happened nat-

urally. In this respect, to address the risk of introducing bias into our search

queries, we removed the queries referring directly to the 1918 pandemic. On

the other hand, some queries might not directly refer to the 1918 pandemic but770

they might have been biased by the wording in Prompt 1. This is a possible

limitation to our work, but we believe that the size our dataset and the collective

way in which we carried out our analysis have mitigated this form of bias.

In addition, in our attempt to provide a uniform task across all four locations,

we posed the crowdsourcing task in English, a lingua franca in Europe. This775

decision has not affected to a large degree the language in which crowdwork-

ers reported their queries. We received 26.9% English queries from Germany,

18.9% from Spain and 14.6% from Italy. It is also important to consider that

participants who are foreign residents of a given country might have replied in

their native language.780

Finally, another limitation of conducting the crowdsourcing task is that as

part of our study, we asked workers to report to us some demographic infor-

mation as well as to identify how frequently they use image search and how

important is image search as a source of information to them. Having partici-

pants self-report this information is a technique that has its own limitations [44],785

but remains the only available tool for crowdsourcing. We remind the reader

again that our sample of crowdworkers is not meant to represent the general

population of each region, as this was not the aim of the current study.

6.5.2. Analysis of results
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We identified a few limitations relating to the similarity analysis of search790

results. Firstly, previous studies have shown that results seen by logged in

users may be different to those accessed using incognito tab [43, 20] due to

personalisation, or randomisation [21] applied to results shown to the users. In

this study, we did not capture the personalisation aspect due to the limitation

of Zenserp API. This indicates that the images analysed in this study might795

differ to those shown to real users. However, our findings still assert that, even

before personalisation is applied, the results shown to users based in different

locations are already significantly different to each other. With personalisation

taken into account, it is possible that the differences between results are more

significant than those reported in this study.800

Secondly, our similarity analysis is based on the overlap of image URLs.

Therefore, duplicate images that with different URLs would have been counted

as different results. However, the rate of these is very low and unlikely to cause

major deviation in the results.

Thirdly, due to the small overlap of exact queries between language pairs,805

our multilingual analysis was based on a small set of queries. We plan to gather

more multilingual queries in the future to allow us to further assess the impact

of thematic categories in multilingual queries.

The last limitation relates to the quality of the Clarifai general model used

in our image tagging task. Whilst the tagger was useful in identifying general810

concepts portrayed in the images, it can not be used to differentiate concepts

of varying importance. E.g., with regards to Covid-related images, the over-

lap of the tag “face mask” across results is more important and relevant than

the overlap of tags such as “street” or “sky”. However, these varying impor-

tance between the different tags are not currently captured, and all concepts are815

considered to be equally important. We aim to investigate methods to assign

weights for these Covid-19 related concepts as future work. Moreover, we found

cases where incorrect tags were retrieved, e.g., “drag race” or “rally” were of-

ten found for images of people wearing masks, which indicated that the general

model was not specifically trained for images related to Covid-19, or a pandemic820
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in general. However, these inaccuracies were constant across the different results

and therefore should not cause major differences in the findings.

7. Conclusions and Future Work

Google search engine plays a key role in the visual information sources that

people across the globe access. Our exploratory study aims to investigate how825

Google presents images of the Covid-19 pandemic, specifically to users in dif-

ferent locations and those using queries in different languages. We used a two

step-approach. Firstly, we created a crowdsourcing task to collect a rich and di-

verse set of Covid-19 related queries for documenting the pandemic from workers

in Great Britain, Germany, Italy and Spain. Secondly, we analysed how Google830

Image Search responds to parameters such as the users’ geo-locations and query

language in retrieving results for these queries.

An important finding was that Google retrieved different images for all 324

queries, i.e., users in different locations were given at least one different im-

age in the top 30 results. On average, only 46% of images were the same for835

users across locations. These varied widely between different queries and the-

matic categories. When considering multilingual queries, users based in the

same country retrieved completely different results to each other (less than 4%

overlap). These differences are highly influenced by the localisation rates. We

further found that English queries accessed in GB retrieved highly localised re-840

sults compared to results accessed from DE, ES and IT, and that non-English

queries have very low localisation in GB results compared to English queries.

Identifying how these different results influence the quality of information

that users receive is a challenging yet prominent task that we plan to investigate

for our future work. In particular, we plan to develop a method to establish845

ground truth that we can use to measure the quality of information presented to

users. Another direction we wish to examine is the behaviour of crowdworkers in

formulating queries based on their cultural background. To this end, we plan to

enlarge our dataset, and expand on the idea of how the demographic differences
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among workers are associated or can explain the provided queries and result850

differences.
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gheni, L. Nelson, S. Aref, F. Flöck (Eds.), Social Informatics, Lecture Notes

in Computer Science, Springer International Publishing, 2019, p. 253–266.

doi:10.1007/978-3-030-34971-4_17.1025

[44] M. Prior, The challenge of measuring media exposure: Reply to dilliplane,

goldman, and mutz, Political Communication 30 (4) (2013) 620–634. doi:

10.1080/10584609.2013.819539.

41Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof



Highlights

● This exploratory study shed a light on the varying degrees of similarity of results 

retrieved from Google Images for queries related to the Covid-19 pandemic

● We gathered related queries for image search from crowdworkers in four countries 

and identied five thematc categories for these queries

● Users based in different countries who submited the same query retrieved results 

with an average of 46% similarity in the top 30 images

● Users based in the same country retrieved completely different results when their 

queries are writen in different languages (<4% similar images in the top 30 images)

● Localisaton rates highly infuence the similarity of search results across different 

locatons
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